资源类型

期刊论文 353

会议视频 5

年份

2024 2

2023 22

2022 32

2021 34

2020 16

2019 28

2018 25

2017 15

2016 18

2015 12

2014 15

2013 14

2012 7

2011 16

2010 18

2009 14

2008 24

2007 21

2006 5

2005 5

展开 ︾

关键词

个人热管理 2

中国 2

交通 2

卫星 2

发展 2

多式联运 2

数值模拟 2

热分析 2

Fluent 1

IHNI-1反应堆;热工水力;子通道;安全分析 1

Inconel 718合金 1

PV/T 1

Q值监测 1

Rosenthal方程 1

SAHP 1

ZN-1阻尼橡胶材料 1

上海港 1

不可还原性 1

严重事故 1

展开 ︾

检索范围:

排序: 展示方式:

Thermal transport properties of monolayer phosphorene: a mini-review of theoretical studies

Guangzhao QIN, Ming HU

《能源前沿(英文)》 2018年 第12卷 第1期   页码 87-96 doi: 10.1007/s11708-018-0513-y

摘要: Phosphorene, a two-dimensional (2D) elemental semiconductor with a high carrier mobility and intrinsic direct band gap, possesses fascinating chemical and physical properties distinctively different from other 2D materials. Its rapidly growing applications in nano-/opto-electronics and thermoelectrics call for fundamental understanding of the thermal transport properties. Considering the fact that there have been so many studies on the thermal transport in phosphorene, it is on emerging demand to have a review on the progress of previous studies and give an outlook on future work. In this mini-review, the unique thermal transport properties of phosphorene induced by the hinge-like structure are examined. There exists a huge deviation in the reported thermal conductivity of phosphorene in literature. Besides, the mechanism underlying the deviation is discussed by reviewing the effect of different functionals and cutoff distance in calculating the thermal transport properties of phosphorene. It is found that the (vdW) interactions play a key role in the formation of resonant bonding, which leads to long-ranged interactions. Taking into account of the vdW interactions and including the long-ranged interactions caused by the resonant bonding with large cutoff distance are important for getting the accurate and converged thermal conductivity of phosphorene. Moreover, a fundamental insight into the thermal transport is provided based on the review of resonant bonding in phosphorene. This mini-review summarizes the progress of the thermal transport in phosphorene and gives an outlook on future horizons, which would benefit the design of phosphorene based nano-electronics.

关键词: thermal transport     phosphorene     resonant bonding    

Impacts of cone-structured interface and aperiodicity on nanoscale thermal transport in Si/Ge superlattices

Pengfei JI, Yiming RONG, Yuwen ZHANG, Yong TANG

《能源前沿(英文)》 2018年 第12卷 第1期   页码 137-142 doi: 10.1007/s11708-018-0532-8

摘要: Si/Ge superlattices are promising thermoelectric materials to convert thermal energy into electric power. The nanoscale thermal transport in Si/Ge superlattices is investigated via molecular dynamics (MD) simulation in this short communication. The impact of Si and Ge interface on the cross-plane thermal conductivity reduction in the Si/Ge superlattices is studied by designing cone-structured interface and aperiodicity between the Si and Ge layers. The temperature difference between the left and right sides of the Si/Ge superlattices is set up for nonequilibrium MD simulation. The spatial distribution of temperature is recorded to examine whether the steady-state has been reached. As a crucial factor to quantify thermal transport, the temporal evolution of heat flux flowing through Si/Ge superlattices is calculated. Compared with the even interface, the cone-structured interface contributes remarkable resistance to the thermal transport, whereas the aperiodic arrangement of Si and Ge layers with unequal thicknesses has a marginal influence on the reduction of effective thermal conductivity. The interface with divergent cone-structure shows the most excellent performance of all the simulated cases, which brings a 33% reduction of the average thermal conductivity to the other Si/Ge superlattices with even, convergent cone-structured interfaces and aperiodic arrangements. The design of divergent cone-structured interface sheds promising light on enhancing the thermoelectric efficiency of Si/Ge based materials.

关键词: thermoelectric material     thermal transport     Si/Gesuperlattics     molecular dynamics (MD)    

Thermal transport in organic/inorganic composites

Bin LIU, Lan DONG, Qing XI, Xiangfan XU, Jun ZHOU, Baowen LI

《能源前沿(英文)》 2018年 第12卷 第1期   页码 72-86 doi: 10.1007/s11708-018-0526-6

摘要: Composite materials, which consist of organic and inorganic components, are widely used in various fields because of their excellent mechanical properties, resistance to corrosion, low-cost fabrication, etc. Thermal properties of organic/inorganic composites play a crucial role in some applications such as thermal interface materials for micro-electronic packaging, nano-porous materials for sensor development, thermal insulators for aerospace, and high-performance thermoelectric materials for power generation and refrigeration. In the past few years, many studies have been conducted to reveal the physical mechanism of thermal transport in organic/inorganic composite materials in order to stimulate their practical applications. In this paper, the theoretical and experimental progresses in this field are reviewed. Besides, main factors affecting the thermal conductivity of organic/inorganic composites are discussed, including the intrinsic properties of organic matrix and inorganic fillers, topological structure of composites, loading volume fraction, and the interfacial thermal resistance between fillers and organic matrix.

关键词: thermal conductivity     organic/inorganic composites     effective medium theory     thermal percolation theory     interfacial thermal resistance    

Experimental research on thermal transport properties of crystallized palladium-based alloys

Siyuan CHENG, Xuguo SHI, Weigang MA, Xing ZHANG, Guanglai LIU, Mingxiang PAN, Weihua WANG

《能源前沿(英文)》 2018年 第12卷 第1期   页码 121-126 doi: 10.1007/s11708-018-0531-9

摘要: Palladium-based alloy is a kind of material with a high glass forming ability and can be easily formed into an amorphous state. After an annealing process, it can also be maintained at a crystallized state. To study the thermal and electrical transport properties of crystallized palladium-based alloys, the steady-state T-type method, standard four-probe method, and AC heating-DC detecting T-type method were used to measure the thermal conductivity, electrical conductivity, and Seebeck coefficient of crystallized Pd Ni Cu P and Pd Ni Cu P alloys respectively. The results show that compared to amorphous samples, the thermal conductivity and electrical conductivity of crystallized palladium-based alloys are significantly higher, while the Seebeck coefficient is lower. The ratio of crystallized and amorphous thermal conductivity is higher for Pd Ni Cu P alloy fiber which has a higher glass forming ability, while the ratio of electronic thermal conductivity almost remains constant for both alloy fibers. The results also show that the slope of electrical resistivity to temperature is a function of elemental composition for crystallized quaternary palladium-based alloy fibers. The sensitivity of thermal conductivity and electrical conductivity to the composition is high, while the correlation between Seebeck coefficient and composition is relatively weak.

关键词: palladium-based alloy     T-type method     thermal conductivity     electrical conductivity     Seebeck coefficient    

Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free

Haiyan LI, Jing LIU

《能源前沿(英文)》 2011年 第5卷 第1期   页码 20-42 doi: 10.1007/s11708-011-0139-9

摘要: Water is perhaps the most widely adopted working fluid in conventional industrial heat transport engineering. However, it may no longer be the best option today due to the increasing scarcity of water resources. Furthermore, the wide variations in water supply throughout the year and across different geographic regions also makes it harder to easily access. To address this issue, finding new alternatives to replace water-based technologies is imperative. In this paper, the concept of a water-free heat exchanger is proposed and comprehensively analyzed for the first time. The liquid metal with a low melting point is identified as an ideal fluid that can flexibly be used within a wide range of working temperatures. Some liquid metals and their alloys, which have previously received little attention in thermal management areas, are evaluated. With superior thermal conductivity, electromagnetic field drivability, and extremely low power consumption, liquid metal coolants promise many opportunities for revolutionizing modern heat transport processes: serving as heat transport fluid in industries, administrating thermal management in power and energy systems, and innovating enhanced cooling in electronic or optical devices. Furthermore, comparative analyses are conducted to understand the technical barriers encountered by advanced water-based heat transfer strategies and clarify this new frontier in heat-transport study. In addition, the unique merits of liquid metals that could lead to innovative heat exchanger technologies are evaluated comprehensively. A few promising industrial situations, such as heat recovery, chip cooling, thermoelectricity generation, and military applications, where liquid metals could play irreplaceable roles, were outlined. The technical challenges and scientific issues thus raised are summarized. With their evident ability to meet various critical requirements in modern advanced energy and power industries, liquid metal-enabled technologies are expected to usher a new and global era of water-free heat exchangers.

关键词: heat exchanger     liquid metal     water resource     heat transport enhancement     coolant     thermal management     process engineering     energy crisis     chip cooling    

A way to explain the thermal boundary effects on laminar convection through a square duct

Liangbi WANG, Xiaoping GAI, Kun HUANG, Yongheng ZHANG, Xiang YANG, Xiang WU

《能源前沿(英文)》 2010年 第4卷 第4期   页码 496-506 doi: 10.1007/s11708-010-0020-2

摘要: A way using the reformulation of the energy conservation equation in terms of heat flux to explain the thermal boundary effects on laminar convective heat transfer through a square duct is presented. For a laminar convection through a square duct, it explains that on the wall surface, the velocity is zero, but convection occurs for uniform wall heat flux (UWHF) boundary in the developing region due to the velocity gradient term; for uniform wall temperature (UWT) boundary, only diffusion process occurs on the wall surface because both velocity and velocity gradient do not contribute to convection; for UWHF, the largest term of the gradient of velocity components (the main flow velocity) on the wall surface takes a role in the convection of the heat flux normal to the wall surface, and this role exists in the fully developed region. Therefore, a stronger convection process occurs for UWHF than for UWT on the wall surface. The thermal boundary effects on the laminar convection inside the flow are also detailed.

关键词: convective transport     heat transfer     mass transfer     laminar flow     thermal boundary effects    

The source and transport of bioaerosols in the air: A review

《环境科学与工程前沿(英文)》 2021年 第15卷 第3期 doi: 10.1007/s11783-020-1336-8

摘要:

• Emission of microbe from local environments is a main source of bioaerosols.

关键词: Bioaerosols     Diffusion     Source identification     Biogeography    

Intercontinental transport of air pollution

Lin ZHANG,

《环境科学与工程前沿(英文)》 2010年 第4卷 第1期   页码 20-29 doi: 10.1007/s11783-010-0014-7

摘要: There is an increasing interest on the intercontinental transport of air pollution among the three main emission regions at northern mid-latitudes: North America, Europe, and East Asia. Air pollutants with sufficient long lifetime can be transported from one continent to another. Observations from ground sites, aircraft and satellites have demonstrated this intercontinental-scale transport of air pollutants in the free troposphere. Numerical models have been applied to understand the pathways of the transport and the impact of intercontinental pollution transport. This paper reviews current observational evidence and modeling studies of intercontinental transport of ozone and its precursors, and the resulting impacts on air quality.

关键词: intercontinental transport     ozone     air pollution    

Future urban transport management

《工程管理前沿(英文)》   页码 534-539 doi: 10.1007/s42524-023-0255-3

摘要: The incorporation of disruptive innovations into the transportation industry will inevitably cause major upheavals in the transportation sector. However, existing research lacks systematic theories and methodologies to represent the underlying characteristics of future urban transport systems. Furthermore, emerging modes in urban mobility have not been sufficiently studied. The National Natural Science Foundation of China (NSFC) officially approved the Basic Science Center project titled “Future Urban Transport Management” in 2022. The project members include leading scientists and engineers from Beijing Jiaotong University, Beihang University, and Beijing Transport Institute. Based on a wide range of previous projects by the consortium on urban mobility and sustainable cities, this project will encompass transdisciplinary and interdisciplinary research to explore critical issues affecting future urban traffic management. It aims to develop fundamental theories and methods based on social and technological developments in the near future and explores innovative solutions to implement alongside these emerging developments in urban mobility.

关键词: future urban transport management     travel behavior characteristics     transportation operations     transportation emergency management     transportation decision intelligence    

EFFECTS OF TRANSPORT STRESS ON THE INTESTINES INVOLVING NEURONAL NITRIC OXIDE SYNTHASE

《农业科学与工程前沿(英文)》   页码 285-295 doi: 10.15302/J-FASE-2022469

摘要:

● Transport stress declined the level of leukocytes including lymphocytes in rat serum.

关键词: intestine     nNOS     nNOS-positive neurons     transport stress    

Cooling strategies and transport theories for brain hypothermia resuscitation

LIU Jing

《能源前沿(英文)》 2007年 第1卷 第1期   页码 32-57 doi: 10.1007/s11708-007-0004-z

摘要: The brain is one of the most important organs in a biological body whose normal function depends heavily on an uninterrupted delivery of oxygen. Unlike skeletal muscles that can survive for hours without oxygen, neuron cells in the brain are easily subjected to an irreversible damage within minutes from the onset of oxygen deficiency. With the interruption of cardiopulmonary circulation in many cardiac surgical procedures or accidental events leading to cerebral circulation arrest, an imbalance between energy production and consumption will occur which causes a rapid depletion of oxygen due to the interrupted blood-flow to the brain. Meanwhile, the cooling function of the blood flow on the hot tissue will be stopped, while metabolic heat generation in the tissues still keeps running for awhile. Under such adverse situations, the potential for cerebral protection through hypothermia has been intensively investigated in clinics by lowering brain temperature to restrain the cerebral oxygen demands. The reason can be attributed to the decreased metabolic requirements of the cold brain tissues, which allows a longer duration for the brain to endure reduced oxygen delivery. It is now clear that hypothermia would serve as the principal way for neurologic protection in a wide variety of emergency medicines, especially in cerebral damage, anoxia, circulatory arrest, respiratory occlusion, etc. However, although brain cooling has been found uniquely significant in clinical practices, the serious lack of knowledge on the mechanisms involved prevents its further advancement in brain resuscitation. Compared with the expanded trials in clinics, only very limited efforts were made to probe the engineering issues involved, which turns out to be a major obstacle for the successful operation of brain hypothermia resuscitation. From the viewpoint of biothermal medical engineering, the major theories and strategies for administering brain cooling can generally be classified into three categories: heat transfer, oxygen transport and cooling strategy. Aiming to provide a complete overview of the brain hypothermia resuscitation, this article comprehensively summarizes the recent progresses made in theoretical, practical and experimental techniques in the area. Particularly, attention is paid to the mathematical models to quantify the heat and oxygen transport inside the cerebral tissues. Typical cooling strategies to effectively lower brain temperature and thus decrease oxygen consumption rate in the cerebral tissues are analyzed. Approaches to deliver oxygen directly to the target tissues are discussed. Meanwhile, some future efforts worth pursuing within the area of brain cooling are suggested.

关键词: mathematical     interruption     hypothermia     metabolic     generation    

Seasonal variations of transport pathways andpotential sources of PM

Yuan Chen, Shaodong Xie, Bin Luo

《环境科学与工程前沿(英文)》 2018年 第12卷 第1期 doi: 10.1007/s11783-018-1009-z

摘要: Seasonal pattern of transport pathways and potential sourcesof PM in Chengdu during 2012–2013were investigated based on hourly PM data,backward trajectories, clustering analysis, potential source contributionfunction (PSCF), and concentration-weighted trajectory (CWT) method.The annual hourly mean PM concentrationin Chengdu was 97.4 mg·m . 5, 5, 5 and 3 mean clusters were generatedin four seasons, respectively. Short-distance air masses, which travelledwithin the Sichuan Basin with no specific source direction and relativelyhigh PM loadings (>80 mg·m ) appearedas important pathways in all seasons. These short pathways indicatedthat emissions from both local and surrounding regions of Chengducontributed significantly to PM pollution.The cities in southern Chengdu were major potential sources with PSCF>0.6and CWT>90 mg·m . The northeastern pathway prevailed throughoutthe year with higher frequency in autumn and winter and lower frequencyin spring and summer. In spring, long-range transport from southernXinjiang was a representative dust invasion path to Chengdu, and theCWT values along the path were 30-60 mg·m . Long-range transportwas also observed in autumn from southeastern Xinjiang along a northwesterlypathway, and in winter from the Tibetan Plateau along a westerly pathway.In summer, the potential source regions of Chengdu were smaller thanthose in other seasons, and no long-range transport pathway was observed.Results of PSCF and CWT indicated that regions in Qinghai and Tibetcontributed to PM pollution in Chengdu aswell, and their CWT values increased to above 30 mg·m in winter.

关键词: Transport pathway     Backwardtrajectory     Clustering analysis     Potential source     Chengdu    

A CFD study of the transport and fate of airborne droplets in a ventilated office: The role of droplet

《环境科学与工程前沿(英文)》 2022年 第16卷 第3期 doi: 10.1007/s11783-021-1465-8

摘要:

• Coulomb and Lennard−Jones forces were considered for droplet interactions.

关键词: Droplet interactions     Aerosols     Colloids     CFD     Transport     Fate    

Computational fluid dynamics simulation of aerosol transport and deposition

Yingjie TANG, Bing GUO

《环境科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 362-377 doi: 10.1007/s11783-011-0365-8

摘要: In this article computational fluid dynamics (CFD) simulation of aerosol transport and deposition, i.e. the transport and deposition of particles in an aerosol, is reviewed. The review gives a brief account of the basics of aerosol mechanics, followed by a description of the general CFD approach for flow field simulation, turbulence modeling, wall treatments and simulation of particle motion and deposition. Then examples from the literature are presented, including CFD simulation of particle deposition in human respiratory tract and particle deposition in aerosol devices. CFD simulation of particle transport and deposition may provide information that is difficult to obtain through physical experiments, and it may help reduce the number of experiments needed for device design. Due to the difficulty of describing turbulent flow and particle-eddy interaction, turbulent dispersion of particles remains one of the greatest challenges for CFD simulation. However, it is possible to take a balanced approach toward quantitative description of aerosol dispersion using CFD simulation in conjunction with empirical relations.

关键词: computational fluid dynamics (CFD)     aerosol     transport     deposition    

Mass transport mechanisms within pervaporation membranes

Yimeng Song, Fusheng Pan, Ying Li, Kaidong Quan, Zhongyi Jiang

《化学科学与工程前沿(英文)》 2019年 第13卷 第3期   页码 458-474 doi: 10.1007/s11705-018-1780-1

摘要: Pervaporation is an energy-efficient membrane technology for separating liquid molecules of similar physical properties, which may compete or combine with distillation separation technology in a number of applications. With the rapid development of new membrane materials, the pervaporation performance was significantly improved. Fundamental understanding of the mass transport mechanisms is crucial for the rational design of membrane materials and efficient intensification of pervaporation process. Based on the interactions between permeate molecules and membranes, this review focuses on two categories of mass transport mechanisms within pervaporation membranes: physical mechanism (solution-diffusion mechanism, molecular sieving mechanism) and chemical mechanism (facilitated transport mechanism). Furthermore, the optimal integration and evolution of different mass transport mechanisms are briefly introduced. Material selection and relevant applications are highlighted under the guidance of mass transport mechanisms. Finally, the current challenges and future perspectives are tentatively identified.

关键词: pervaporation membrane     mass transport mechanisms     physical mechanism     chemical mechanism    

标题 作者 时间 类型 操作

Thermal transport properties of monolayer phosphorene: a mini-review of theoretical studies

Guangzhao QIN, Ming HU

期刊论文

Impacts of cone-structured interface and aperiodicity on nanoscale thermal transport in Si/Ge superlattices

Pengfei JI, Yiming RONG, Yuwen ZHANG, Yong TANG

期刊论文

Thermal transport in organic/inorganic composites

Bin LIU, Lan DONG, Qing XI, Xiangfan XU, Jun ZHOU, Baowen LI

期刊论文

Experimental research on thermal transport properties of crystallized palladium-based alloys

Siyuan CHENG, Xuguo SHI, Weigang MA, Xing ZHANG, Guanglai LIU, Mingxiang PAN, Weihua WANG

期刊论文

Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free

Haiyan LI, Jing LIU

期刊论文

A way to explain the thermal boundary effects on laminar convection through a square duct

Liangbi WANG, Xiaoping GAI, Kun HUANG, Yongheng ZHANG, Xiang YANG, Xiang WU

期刊论文

The source and transport of bioaerosols in the air: A review

期刊论文

Intercontinental transport of air pollution

Lin ZHANG,

期刊论文

Future urban transport management

期刊论文

EFFECTS OF TRANSPORT STRESS ON THE INTESTINES INVOLVING NEURONAL NITRIC OXIDE SYNTHASE

期刊论文

Cooling strategies and transport theories for brain hypothermia resuscitation

LIU Jing

期刊论文

Seasonal variations of transport pathways andpotential sources of PM

Yuan Chen, Shaodong Xie, Bin Luo

期刊论文

A CFD study of the transport and fate of airborne droplets in a ventilated office: The role of droplet

期刊论文

Computational fluid dynamics simulation of aerosol transport and deposition

Yingjie TANG, Bing GUO

期刊论文

Mass transport mechanisms within pervaporation membranes

Yimeng Song, Fusheng Pan, Ying Li, Kaidong Quan, Zhongyi Jiang

期刊论文